32 research outputs found

    Automated visual tracking for studying the ontogeny of zebrafish swimming

    Get PDF
    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current approach assumes planar motion of the fish, given image sequences taken from a top view. An accurate geometric fish model is automatically designed and fit to the images at each time frame. Our approach works across a range of fish shapes and sizes and is therefore well suited for studying the ontogeny of fish swimming, while also being robust to common environmental occlusions. Our current analysis focuses on measuring the influence of vertebra development on the swimming capabilities of zebrafish. We examine wild-type zebrafish and mutants with stiff vertebrae (stocksteif) and quantify their body kinematics as a function of their development from larvae to adult (mutants made available by the Hubrecht laboratory, The Netherlands). By tracking the fish, we are able to measure the curvature and net acceleration along the body that result from the fish's body wave. Here, we demonstrate the capabilities of the tracking system for the escape response of wild-type zebrafish and stocksteif mutant zebrafish. The response was filmed with a digital high-speed camera at 1500 frames s–1. Our approach enables biomechanists and ethologists to process much larger datasets than possible at present. Our automated tracking scheme can therefore accelerate insight in the swimming behavior of many species of (developing) fish

    Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (<it>Ovis aries</it>) AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn) and maturity (72 weeks). In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint) in the distal metacarpus of a fore leg and a hind leg.</p> <p>Results</p> <p>Collagen density increases from birth to maturity up to our last sample point (72 weeks). Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., <it>n </it>= 48) at 0 weeks to 0.51 g/ml ± 0.10 g/ml (<it>n </it>= 46) at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (<it>n </it>= 48) at 0 weeks to 0.91 g/ml ± 0.13 g/ml (<it>n </it>= 46) at 72 weeks. Most collagen density profiles at 0 weeks (85%) show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks.</p> <p>Conclusions</p> <p>Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest animals, but that has disappeared in the oldest animals. We discuss that the retardance valley (as seen with polarised light microscopy) in perinatal animals reflects a decrease in collagen density, as well as a decrease in collagen fibril anisotropy.</p

    Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    Get PDF
    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis

    Differential response by males and females to manipulation of partner contribution in the great tit (Parus major)

    No full text
    1. In birds with bi-parental care, handicapping is often assumed to decrease the amount of parental care of the handicapped partner. We discuss how handicapping could alter the shape of the handicapped bird's survival–effort curve (theoretical curve relating the survival of a parent to its effort) and show that the optimal response could yield a decrease, no response or even an increase in effort of the handicapped bird. 2. Male or female great tits Parus major (L.) were handicapped during the nestling period by clipping a number of feathers in order to study the effects on parental care and body condition. 3. Handicapped males significantly decreased their feeding rates, while handicapped females did not. Condition of handicapped females significantly deteriorated, while condition of handicapped males did not change during the experiment. Females with a handicapped partner fully compensated for their partner's decrease in work rate, while males with a handicapped partner did not show any compensation and even tended to decrease their feeding rates. 4. Using an inverse optimality approach, we reconstructed the theoretical curve relating the survival of a parent to its effort on the basis of the experimental effects. The handicapped male's survival–effort curve appeared to be slightly steeper than that of handicapped females. This suggests that handicapped males suffer more from an increase in effort than handicapped females.

    Proteomics analysis of the zebrafish skeletal extracellular matrix

    No full text
    The extracellular matrix of the immature and mature skeleton is key to the development and function of the skeletal system. Notwithstanding its importance, it has been technically challenging to obtain a comprehensive picture of the changes in skeletal composition throughout the development of bone and cartilage. In this study, we analyzed the extracellular protein composition of the zebrafish skeleton using a mass spectrometry-based approach, resulting in the identification of 262 extracellular proteins, including most of the bone and cartilage specific proteins previously reported in mammalian species. By comparing these extracellular proteins at larval, juvenile, and adult developmental stages, 123 proteins were found that differed significantly in abundance during development. Proteins with a reported function in bone formation increased in abundance during zebrafish development, while analysis of the cartilage matrix revealed major compositional changes during development. The protein list includes ligands and inhibitors of various signaling pathways implicated in skeletogenesis such as the Int/Wingless as well as the insulin-like growth factor signaling pathways. This first proteomic analysis of zebrafish skeletal development reveals that the zebrafish skeleton is comparable with the skeleton of other vertebrate species including mammals. In addition, our study reveals 6 novel proteins that have never been related to vertebrate skeletogenesis and shows a surprisingly large number of differences in the cartilage and bone proteome between the head, axis and caudal fin regions. Our study provides the first systematic assessment of bone and cartilage protein composition in an entire vertebrate at different stages of development

    Effects of lighting schedule during incubation of broiler chicken embryos on leg bone development at hatch and related physiological characteristics

    No full text
    Providing a broiler chicken embryo with a lighting schedule during incubation may stimulate leg bone development. Bone development may be stimulated through melatonin, a hormone released in darkness that stimulates bone development, or increased activity in embryos exposed to a light-dark rhythm. Aim was to investigate lighting conditions during incubation and leg bone development in broiler embryos, and to reveal the involved mechanisms. Embryos were incubated under continuous cool white 500 lux LED light (24L), continuous darkness (24D), or 16h of light, followed by 8h of darkness (16L:8D) from the start of incubation until hatching. Embryonic bone development largely takes place through cartilage formation (of which collagen is an important component) and ossification. Expression of genes involved in cartilage formation (col1α2, col2α1, and col10α1) and ossification (spp1, sparc, bglap, and alpl) in the tibia on embryonic day (ED)13, ED17, and at hatching were measured through qPCR. Femur and tibia dimensions were determined at hatch. Plasma growth hormone and corticosterone and pineal melatonin concentrations were determined every 4h between ED18.75 and ED19.5. Embryonic heart rate was measured twice daily from ED12 till ED19 as a reflection of activity. No difference between lighting treatments on gene expression was found. 24D resulted in higher femur length and higher femur and tibia weight, width, and depth at hatch than 16L:8D. 24D furthermore resulted in higher femur length and width and tibia depth than 24L. Embryonic heart rate was higher for 24D and 16L:8D in both its light and dark period than for 24L, suggesting that 24L embryos may have been less active. Melatonin and growth hormone showed different release patterns between treatments, but the biological significance was hard to interpret. To conclude, 24D resulted in larger leg bones at hatch than light during incubation, but the underlying pathways were not clear from present data.</p

    Schematic representation of the swim-training set-up in lateral view and critical flow velocity.

    No full text
    <p><b>A</b>) Water was pumped (1) to the top aquarium and flowed back into the reservoir via the training tubes (4), outflow tubes (5) and outflow hoses (6) due to gravity. The difference in water level between the top aquarium and the outflow tubes (5) (indicated with up down black arrow) determined the flow velocity in the training tubes (4). Control fish were kept in similar tubes in the same set-up (7). Both the training and control section consisted of five tubes placed parallel to each other (not visible in drawing). Each tube had its own outflow tube and hose. <b>B</b>) Critical flow velocity (<i>U<sub>crit</sub></i>) over time and during swim-training experiments (<i>U<sub>critse</sub></i>). Zebrafish were subjected to 50% (<i>U<sub>crit</sub></i><sub>50%</sub>) of the moving average <i>U<sub>crit</sub></i> (<i>U<sub>critma</sub></i>).</p

    Light-dark rhythms during incubation of broiler chicken embryos and their effects on embryonic and post hatch leg bone development.

    No full text
    There are indications that lighting schedules applied during incubation can affect leg health at hatching and during rearing. The current experiment studied effects of lighting schedule: continuous light (24L), 12 hours of light, followed by 12 hours of darkness (12L:12D), or continuous darkness (24D) throughout incubation of broiler chicken eggs on the development and strength of leg bones, and the role of selected hormones in bone development. In the tibiatarsus and femur, growth and ossification during incubation and size and microstructure at day (D)0, D21, and D35 post hatching were measured. Plasma melatonin, growth hormone, and IGF-I were determined perinatally. Incidence of tibial dyschondroplasia, a leg pathology resulting from poor ossification at the bone's epiphyseal plates, was determined at slaughter on D35. 24L resulted in lower embryonic ossification at embryonic day (E)13 and E14, and lower femur length, and lower tibiatarsus weight, length, cortical area, second moment of area around the minor axis, and mean cortical thickness at hatching on D0 compared to 12L:12D especially. Results were long term, with lower femur weight and tibiatarsus length, cortical and medullary area of the tibiatarsus, and second moment of area around the minor axis, and a higher incidence of tibial dyschondroplasia for 24L. Growth hormone at D0 was higher for 24D than for 12L:12D, with 24L intermediate, but plasma melatonin and IGF-I did not differ between treatments, and the role of plasma melatonin, IGF-I, and growth hormone in this process was therefore not clear. To conclude, in the current experiment, 24L during incubation of chicken eggs had a detrimental effect on embryonic leg bone development and later life leg bone strength compared to 24D and 12L:12D, while the light-dark rhythm of 12L:12D may have a stimulating effect on leg health

    Effects of lighting schedule during incubation of broiler chicken embryos on leg bone development at hatch and related physiological characteristics

    No full text
    Providing a broiler chicken embryo with a lighting schedule during incubation may stimulate leg bone development. Bone development may be stimulated through melatonin, a hormone released in darkness that stimulates bone development, or increased activity in embryos exposed to a light-dark rhythm. Aim was to investigate lighting conditions during incubation and leg bone development in broiler embryos, and to reveal the involved mechanisms. Embryos were incubated under continuous cool white 500 lux LED light (24L), continuous darkness (24D), or 16h of light, followed by 8h of darkness (16L:8D) from the start of incubation until hatching. Embryonic bone development largely takes place through cartilage formation (of which collagen is an important component) and ossification. Expression of genes involved in cartilage formation (col1α2, col2α1, and col10α1) and ossification (spp1, sparc, bglap, and alpl) in the tibia on embryonic day (ED)13, ED17, and at hatching were measured through qPCR. Femur and tibia dimensions were determined at hatch. Plasma growth hormone and corticosterone and pineal melatonin concentrations were determined every 4h between ED18.75 and ED19.5. Embryonic heart rate was measured twice daily from ED12 till ED19 as a reflection of activity. No difference between lighting treatments on gene expression was found. 24D resulted in higher femur length and higher femur and tibia weight, width, and depth at hatch than 16L:8D. 24D furthermore resulted in higher femur length and width and tibia depth than 24L. Embryonic heart rate was higher for 24D and 16L:8D in both its light and dark period than for 24L, suggesting that 24L embryos may have been less active. Melatonin and growth hormone showed different release patterns between treatments, but the biological significance was hard to interpret. To conclude, 24D resulted in larger leg bones at hatch than light during incubation, but the underlying pathways were not clear from present data.</p

    Swim-training had a differential effect on the order of appearance of cartilage and bone structures between control and trained fish.

    No full text
    <p><b>A,B</b>) Difference in the rank of cartilage (A) and bone (B) structures between control and trained fish. Red structures indicate a forward shift in the order of appearance, blue structures a delay. Structures which did not show a difference are indicated in grey.</p
    corecore